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Abstract. Features of the classical mechanics under the potentialV = −a(X2+Y 2)+b(X2+
Y 2)2 are related to the quantum-mechanical spectrum. A known topological obstruction to the
existence of global action-angle variables is shown to be reflected in a sharp change in the
disposition of eigenvalues aroundE = 0. The energies of states labelled by a radial quantum
numberv vary smoothly with the angular momentum̀for E < 0 but have a discontinuous
derivative at` = 0 for E > 0. An alternative labelling|n, `〉, wheren = 2v + |`| shows the
opposite effect. Semiclassical arguments based on the forms of positive and negative energy
trajectories also suggest a near symmetry between the positive second derivative (∂2E/∂`2)v
at energy−ε and the negative counterpart (∂2E/∂`2)n at energyε, which is confirmed in the
quantum-mechanical spectrum. Minor deficiencies in the Bohr–Sommerfeld rule are removed
by introducing an analytical phase correctionη(ε, `) for states withε ' 0 and` ' 0.

1. Introduction

Connections between the classical and quantum mechanics of linear motion in a symmetric
double-well potential are well established [1]. The purpose of this paper is to explore similar
connections for the planar analogue, with added angular momentum around the figure axis,
which has been brought into prominence by Bates [2] from whom the title of the paper has
been borrowed. The point of interest is that the champagne bottle is the simplest member
of a class of systems for which the classical mechanics is complicated by a common gross
topological obstruction to the global construction of angle-action variables; others include
the spherical pendulum [3, 4], the Lagrange top [5] and the Hamiltonian Hopf bifurcation
[6]. Questions as to the possible influence of this classical obstruction on the quantum-
mechanical spectrum are relevant to the wide amplitude bending plus skipping rotational
motions of a bent molecule, which are now on the verge of being experimentally observable.
Aspects of this bent/linear transition have been addressed in the molecular physics literature
[7] in the context of constructing a computationally tractable Hamiltonian, but the global
nature of the quantum-mechanical spectrum has not previously been considered.

The topological obstruction arises from the presence of a fixed point at the crown of
the bulge in the bottle, which is conveniently taken as the energy zero; it divides the energy
surface into topological typesS2 × S1 for E < 0 andS3 for E > 0 [2]. The classical
motions lie on two types of torus and a computation of the monodromy of the torus bundle
demonstrates the absence of any smooth connection between the two types. The connection
with quantum mechanics is obtained by labelling the tori at different energies,E, and
angular momenta,L, by actions(Iθ , IR), in which case the monodromy is seen to be
associated with a discontinuity in the partial derivative (∂IR/∂L)E at L = 0 for E > 0 but
not for E < 0, which is a symptom of the discontinuity between the two types of torus.
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An alternative labelling with actions(Iθ , IN) where IN = 2IR + |Iθ | is shown below to
transfer the discontinuity (now in (∂IN/∂L)E at L = 0) to E < 0, from which it is argued
that the tori at negative and positive energies have valid local actions(Iθ , IR) and (Iθ , IN)
respectively.

The influence on the quantum-mechanical spectrum follows from the substitution
Iθ = `h, IR = (v + 1

2)h and IN = (n + 1)h, coupled with the identities (∂E/∂`)v =
−h(∂IR/∂L)E/(∂IR/∂E)L and (∂E/∂`)n = −h(∂IN/∂L)E/(∂IN/∂E)L and the observation
that (∂IR/∂E)L = (∂IN/∂E)L, both being positive and continuous on the lineL = 0 except
at E = 0 for all (L,E). It follows that curves drawn through eigenvalues labelled by
v, the number of radial nodes, will be continuously differentiable (with zero (∂E/∂`)v at
` = 0 due to the symmetry in±`) for E < 0, but not forE > 0. The converse will
apply for curves labelled by common values ofn = 2v+|`|. An interesting near symmetry
between the second derivatives (∂E2/∂`2)v for E < 0 and (∂E2/∂`2)n for E > 0 is also
identified. These conclusions rest on the validity of the Bohr–Sommerfeld quantization
rules. Comparison with numerically accurate quantum-mechanical computations reveals a
systematic discrepancy for energy levels close toE = 0 and` = 0, which is removed by
introducing an analytical phase correctionη(ε, `), whereε is a reduced energy, the form
of which is derived by making a comparison between the JWKB wavefunction [1] and
the asymptotic form a Kummer function [8] that takes proper account of the singularity at
r = 0.

2. Classical background

The Hamiltonian under consideration

H = 1

2m
(P 2

R + P 2
θ /R

2)− aR2+ bR4 (1)

with a > 0 andb > 0, is cyclic in the polar angleθ ; hencePθ is conserved. The critical
points include an unstable fixed point at the originR = 0, PR = 0 if Pθ = 0 and rings of
relative equilibria, withPR = 0, whose radii depend onPθ according to

P 2
θ

2m
+ aZ2− 2bZ3 = 0 (2)

whereZ = R2. Equation (2) admits one real positive solution for each value ofPθ .
The Hamiltonian system is completely integrable because the energy and angular

momentum are conserved. However, Bates [2] concludes on topological grounds that there
can be no global angle-action variables because the energy surface is of topological type
S2 × S1 at negative energies, but of typeS3 when the energy is positive. The motions
therefore lie on two types of tori, whose coordinate projections are illustrated in figure 1.

Further insight, along the lines suggested by Cushman and Duistermaat [3] and Bates
[2], is obtained by defining action variables

I±θ =
∮
Pθ dθ = 2πL

I±R =
∮
PR dR = 2

∫ Rmax

Rmin

PR dR
(3)

where

PR = [2m(E + aR2− bR4− L2/2mR2)]
1
2 (4)
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Figure 1. Trajectories with energies (a) ε = −10 and (b) ε = +10 for the scaled model with
m = 1, a = 0.5, b = 0.005 and|L| = 1. Each trajectory is run for 25 time units withL > 0
(or L < 0) if it is taken to start ata (or b).

in which E is the energy,Rmin andRmax are the radial turning points (at whichPR = 0)
andL = Pθ . The+ and− refer to division of the setS of L values into subsetsS+ and
S− where

S+ = S ∩ {L > 0} S− = S ∩ {L < 0} (5)

thusI+ = (I+θ , I+R ) are actions onS+ andI− = (I−θ , I−R ) are actions onS−.
There is no problem in assigning such actions to any given torus and the positions of

those with regularly spaced(Iθ , IR) are shown in figure 2 in the space defined byL and
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E. The difficulties arise in passing smoothly from torus to another on a pathγ around the
origin. The following argument given by Bates [2], applies a geometrical construction due
to Cushman and Duistermaat [3], to compute what is called the monodromy of the torus
bundle. The holonomy involves parallel transport of a vectorδI = (δIθ , δIR)T in regions
S+ and S− coupled with parallel transport of the tangent vectorδJ = (δL, δE)T across
their junction atL = 0, where derivatives in the tangent relations

δI± = DI±δJ (6)

may be discontinuous. To show the origin of such discontinuities, Bates [2] noted that

DI± =
(
(∂I±θ /∂L) (∂I±θ /∂E)
(∂I±R /∂L) (∂I±R /∂E)

)
=
(

2π, 0
A±, B±

)
(7)

where

A± = −2L±
∫ Rmax

Rmin

R−2P−1
R dR

B± = 2m
∫ Rmax

Rmin

P−1
R dR

(8)

with the understanding thatA± andB± at pointsa and b on the pathγ in figure 2 are
evaluated by taking the limitL→ 0. It follows thatA−a = −A+a , A−b = −A+b , B−a = B+a
andB−b = B+b . Note also thatA± may be evaluated as [2]

A± = −2
∫ Rmax

Rmin

(dθ/dt)

(dR/dt)
dR (9)

which is just minus the increase of the polar variableθ when the radial motion completes
one period. Reference to figures 1(a) and (b) respectively therefore shows thatA±a = 0 in
the limit L→ 0, with E < 0 while A±b = ∓π whenE > 0. It follows that the derivative
(∂IR/∂L) is continuous at the pointa, but discontinuous at the pointb in figure 2.

To see the consequences for the monodromy, consider the initial vectorδI+a originating
at a in S+ in figure 2(b), which joins points withIθ values that differ by five units (because
only every fifthL value is shown) and with a commonIR value (in this case the seventh
point from the bottom of each vertical column). In other words,δI+a = (5, 0)T . Parallel
transport ofδI+a within S+ generates the other vectorsδI+ with the same action differences,
but the lengths and orientations of the tangent vectorδJ+ indicated by the solid arrows
vary according to the inverse of equation (6). On reaching the pointb, δI+b is taken across
L = 0 by parallel transport ofδJ to produce the broken arrow that terminates atb in
figure 2(b). In other words, using equation (6) and its inverse.

δI−b = DI−b (DI+b )−1δI+b = DI−b (DI+b )−1δI+a . (10)

The second half of the cycle is completed in the same way. The final result, after recrossing
L = 0 ata, shows that the initial and final vectors,δI+a and (δI+a )

′ respectively are related
by

(δI+a )
′ = M(δI+a ) (11)

where the monodromy is given by

M = DI+a (DI−a )−1DI−b (DI
+
b )
−1. (12)
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Figure 2. (a) The joint (L,E) spectrum on a uniform action grid with spacing1(Iθ /h̄) = 5,
1(Iθ /h) = 1, using the parameter values employed for figure 1. (b) Parallel transport around
the pathγ , according to the holonomy defined by equations (6) and (10). Broken arrows are
employed after crossing the lineL = 0.

The computation is completed by combining equation (7) with the symmetry relations
B−a = B+a , B−b = B−b and the valuesA±a = 0, A±b = ∓π given above;

M =
(

1 0
1
π
(A±a − A±b ) 0

)
=
(

1 0
1 1

)
. (13)
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The conclusion is that the actionsI = (Iθ , IR) cannot be globally valid because transport
of an arbitary vectorδI+a around the cycleγ does not bring it back to itself—a problem
that arises from the discontinuity in (∂IR/∂L) at L = 0 for E > 0.

No such discontinuity exists forE < 0, however, becauseA+a = A−a = 0. Hence
(Iθ , IR) may be taken to be locally valid forE < 0 where both actions are continuously
differentiable with respect toL andE. The question arises as to whether some combination
of (Iθ , IR) is locally valid in a similar sense forE > 0. The answer is suggested by the
nature of the trajectory in figure 1(b), which is seen to pass through approximately two
cycles of the radial motion for each cycle ofθ . Thus, as in the angle-action theory of the
degenerate harmonic oscillator [1, 9], it is natural to define a new total action

I±N = 2I±R + |I±θ |
= 2I±R ± 2πL± (14)

such that

(∂I±N /∂L
±) = 2(A± ± π). (15)

The additional terms±π transfer the discontinuity from the points withL = 0, E > 0,
whereA± = ∓π to points withL = 0, E < 0, whereA± = 0. The new actionIN is
therefore locally valid forE > 0 in the sense that applies toIR for E < 0.

One should also note a consequence for the angle variables associated with the two
sets of actions. In the(Iθ , IR) system these are the polar angleθ and a radial angle
θR that increases by 2π for each cycle of the radial motion. The appropriate canonical
transformation [12] shows that the corresponding quantities in the (Iθ , IN) system are
θ ′ = θ − 1

2θR and θN = 1
2θR. The significance of the difference betweenθ and θ ′ is

illustrated in figure 1;θ and θ ′ are in fact the proper precessional angles for theε < 0
and ε > 0 trajectories respectively, andθ is seen to precess forward for` > 0, while θ ′

precesses backwards. The explanation, as discussed in the following section, is that theθ

changes accompanying say two cycles of the radial motion for the two types of trajectory
are related by1θ+ + 1θ− = 2π if ε+ = −ε− > 0, whereasθR increases by 4π . Thus
1θ ′+ = 1θ+ − 2π = −1θ−.

3. Bohr–Sommerfeld quantization

The nature of the spectrum in the semiclassical limit is determined by the Bohr–Sommerfeld
quantization rules

Iθ = 2πPθ = `h
IR = (v + 1

2)h

or

IN = 2IR + |Iθ | = (2v + |`| + 1)h = (n+ 1)h. (16)

The labels|v, `〉 and |n, `〉 give alternative equivalent designations for any individual
state, but if`, v and n are treated as continuous variables it follows from the previous
discussion that the derivatives (∂E/∂`)v and (∂E/∂`)n will differ. Thus (∂E/∂`)v =
−(∂v/∂`)v/(∂v/∂E)` vanishes at̀ = 0 for E < 0 but not forE > 0, while the converse
is true for (∂E/∂`)n = −(∂n/∂`)v/(∂n/∂E)`.

To obtain quantitative results it is convenient to apply the scaling substitutions.

R = (h̄2/2ma)
1
4 r E = (2ah̄2/m)ε b = (8ma3/h̄2)

1
4β (17)
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so that the quantization condition may be expressed as

(IR/2h̄) =
∫ rmax

rmin

√
2ε + r2− 2βr4− `2/r2 dr

= 1

2

∫ zmax

zmin

√
2εz + z2− 2βz3− `2

Z
dz =

(
v + 1

2

)
π (18)

where z = r2. Numerical determination of the energy levels therefore simply requires
quadrature for the integral with adjustments to the energy until equation (18) is satisfied.

Relatively simple analytical results for` = 0, which include evidence of an approximate
symmetry between the positive and negative energy spectra, are also available. The formulae
differ according to the ordering of the two lowest roots of the cubic term in equation (18),
which lie at

z = 0, (1±
√

1+ (ε/ε0))/4β (19)

whereε0 is the depth of the potential minimum,Vmin = −ε0 = −(1/16β). At negative
energies equation (18) yields, for` = 0

(v + 1
2) = (8ε0/3π)(2− k2

−)
3/2[(2− k2

−)E(k−)− 2(1− k2
−)K(k−)] (20)

where

k2
− = 2

√
1+ (ε/ε0)/[[1 +

√
1+ (ε/ε0)]] (21)

andE(k−) andK(k−) are elliptic integrals [10, 11]. The corresponding forms at positive
energies are

(v + 1
2) = (8ε0/3π)(2k

2
+ − 1)3/2[(2k2

+ − 1)E(k+)+ (1− k2
+)K(k+)] (22)

and

k2
+ = [1+

√
1+ (ε/ε0)]/2

√
1+ (ε/ε0)]. (23)

Equations (21) and (23) show thatk− varies between 0 and 1 over the energy range
−ε0 6 ε 6 0 while k2

+ decreases from unity atε = 0 to 0.8536 atε = ε0 and 0.5 as
ε → ∞. Insertion of the limiting valuesE(0) = K(0) = π/2, andE(1) = π/2 and
(1− k2)K(k) → 0 ask → 1 [10] in equation (20) shows, as expected, thatv = − 1

2 at
ε = −ε0, while the number of negative energy states is given by the simple formula

v + 1
2 = (8ε0/3π) (24)

at ε = 0. In addition, equation (22) shows that(v+ 1
2) increases by a further 0.95(8ε0/3π)

asε increases toε0, which is one of the approximate symmetries of the system. Finally, it
follows by expansion of the elliptic integrals in equation (20) to orderk4

− [10] that

ε l −ε0+
√

2(v + 1
2) (25)

for the lowest energy states.
A second approximate symmetry relates the record derivatives (∂2ε/∂`2)v at ` = 0 and

ε < 0 to (∂2ε/∂`2)n at ` = 0 andε > 0. Since the quantum numbersv andn = 2v + |`|
were chosen to ensure that the corresponding first derivatives would vanish, the second
derivatives may be evaluated as

(∂2ε/∂`2)v = −(∂2v/∂`2)ε/(∂v/∂ε)` (26)
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and similarly for (∂2ε/∂`2)n. The derivations start in both cases from the following
derivative relations implied by equation (18) [10, 11](

∂v

∂ε

)
`

= 1

π

1√
2β(a − c)K(k)(

∂v

∂`2

)
ε

= − 1

2π

1√
2β(a − c)5(ρ, k)

(27)

where

ρ = −
(
a − b
a

)
k2 =

(
a − b
a − c

)
.

(28)

a, b and c are the roots given in equation (19) in the ordera > b > c and5(ρ, k) is an
elliptic integral of the third kind [10, 11]. The caseε < 0 is straightforward becausec = 0
from which ρ = −k2 and the known properties of5(−k2, k) [11] yield(

∂2ε

∂`2

)
v

= 2β

(
2− k2

−
1− k2−

)
E(k−)
K(k−)

(29)

wherek− is given by equation (21). The caseε > 0 is more complicated becauseb → 0
as`→ 0; henceρ →−1 which leads to a divergence of5(ρ, k) [11], associated with the
discontinuous first derivative (∂v/∂`)ε for ε > 0. Replacingv by n in equations (27) leads
to a cancellation of divergence from the term in|l| on the left-hand side, and one finally
obtains (

∂2ε

∂`2

)
n

= −2β

(
2k2
+ − 1

1− k2+

)
E(k+)− (1− k2

+)K(k+)
k2+K(k+)

(30)

wherek+ is given by equation (23).
It follows from (29) that (∂2ε/∂`2)v = 4β at ε = −ε0, where k2

− = 0, while
equations (23) and (30) show that−(∂2ε/∂`2)n at ε = ε0, differs only by a factor of 0.93.
Similar approximate equalities between corresponding quantities at positive and negative
energies in the range− ε0 6 ε 6 ε0 are indicated in table 1, which may also be used to
interpolate for thè = 0 energy levels and their local second derivatives. The tabulated
quantities are

u− = (3π/8ε0)(v + 1
2)

b− = (∂2ε/∂`2)v/4β
(31)

at energy−ε and

u+ = 2− (3π/8ε0)(v + 1
2)

−b+ = −(∂2ε/∂`2)n/4β
(32)

at energyε. Recall also thatε0 = (1/16β). The divergence ofb± as ε → 0 is of order
[(1−k2)`n(1−k2)]−1 ask2→ 1, while(∂ε/∂v)` and(∂ε/∂n)` tend to zero as [̀n(1−k2

±)]
−1

in the same limit. At energies above the range covered by table 1, the dominant energy
dependence comes from the term(2k2

+ − 1)3/2, which implies that thè = 0 energies are
given by

(εv/ε0) = f (k+)[(3π/8ε0)(v + 1
2)]

4/3− 1 (33)
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Table 1. Scaled quantum numbers,U±, and second derivativesB±, given by equations (31)
and (32).

ε u− u+ b− b+

0.00 1.0000 1.0000 ∞ ∞
0.05 0.9234 0.9237 11.2719 11.0934
0.10 0.8594 0.8607 6.2701 6.1144
0.15 0.8002 0.8028 4.4762 4.3349
0.20 0.7440 0.7481 3.5352 3.4045
0.25 0.6900 0.6960 2.9494 2.8271
0.30 0.6377 0.6458 2.5470 2.4317
0.35 0.5868 0.5972 2.2521 2.1427
0.40 0.5372 0.5501 2.0259 1.9217
0.45 0.4886 0.5041 1.8464 1.7467
0.50 0.4409 0.4593 1.7002 1.6045
0.55 0.3941 0.4154 1.5786 1.4866
0.60 0.3480 0.3723 1.4756 1.3869
0.65 0.3026 0.3301 1.3873 1.3016
0.70 0.2579 0.2886 1.3105 1.2277
0.75 0.2137 0.2478 1.2432 1.1629
0.80 0.1700 0.2076 1.1835 1.1056
0.85 0.1268 0.1679 1.1303 1.0546
0.90 0.0841 0.1289 1.0825 1.0089
0.95 0.0419 0.0903 1.0393 0.9676
1.00 0.0000 0.0522 1.0000 0.9302

wheref (k+) varies from 1.217 atk2
+ = 0.85 (ε l ε0) to 1.162 atk2 = 0.70 (ε l 5.25

ε0). Finally the second derivative(∂2ε/∂`2)n continues to decrease monotonically to zero
asε →∞ (k2

+ → 0.5).
The physical origin of the relative magnitudes and signs of the two final columns in

table 1 may be understood by relating the second partial derivatives to angular velocities
in the forms(∂2E/∂`2)v = `−1(dθ/dt) for ε = ε− < 0 and (∂2E/∂`2)n = `−1(dθ ′/dt)
for ε = ε+ > 0. Here θ is the polar angle andθ ′ is the angle conjugate tò in the
(n, `) system—as discussed at the end of section 2;θ ′ = θ − 1

2θR whereθR is the angle
conjugate to the radial actionIR. Estimates for these angular velocities may be obtained by
comparing the vibrational time periodsT± at energiesε± respectively with corresponding
angle changes, in the approximation that the latter are dominated by the torques at smallr

values, where a quadratic approximation to the potential is valid. The trajectory segments
from one radial maximum to the next (see figure 1) then follow hyperbolic paths which may
be parametrized for angular momentum` andε = ε− as(x, y) = (√2εx cosht,

√
2εy sinht)

where 2εx =
√
ε2− + `2 − ε− and 2εy =

√
ε2− + `2 + ε−. The corresponding form for the

ε+ trajectory is(x, y) = (−√2ε′x sinht,
√

2ε′y cosht), where 2ε′x =
√
ε2+ + `2 + ε+ and

2ε′y =
√
ε2+ + `2− ε+. The convenience of this choice is that the final (t →∞) asymptote

of theε− trajectory coincides with the initial (t →∞) asymptote of theε+ one, ifε− = −ε+.
Hence, the two angle changes are related by1θ− + 1θ+ = π . It also follows by simple

trigonometry that1θ− = arctan(`/
√
ε2− + `2). Moreover, the radial angleθR increases by

2π for each vibrational period. The final conclusion on taking the limit` → 0 is that
(∂2E/∂`2)v l |εT−|−1 for ε < 0, while (∂2E/∂`2)n = |εT+|−1 for ε > 0. We also see
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from table 1 that the time periodsT = 2π(∂E/∂v)−1
` for the corresponding trajectories are

quite similar.

4. The quantum-mechanical spectrum

The scaling in equation (17) reduces the quantum-mechanical Hamiltonian to the form

ĥ = −1

2

[
1

r

∂

∂r

(
r
∂

∂r

)
− `

2

r2

]
− 1

2
r2+ βr4. (34)

Numerically accurate eigenvalues are readily obtained by an expansion in normalized
degenerate harmonic oscillator states

ψ(r) =
∑
n

cnφn`(r) (35)

where

φn`(r) =
[

2{(n− `)/2}!
{(n+ `)/2}!

] 1
2

r`L`(n−`)/2(r
2) (36)

in whichLαυ(z) is the associated Laguerre polynomial [8] and` is taken to be positive. The
necessary matrix elements follow from the recurrence relations

2t̂φn,` = 1
2[(n+ 2)2− `2]

1
2φn+2,` + (n+ 1)φn,` + 1

2[n2− `2]
1
2φn−2,` (37)

r2φn,` = − 1
2[(n+ 2)2− `2]

1
2φn+2,` + (n+ 1)φn,` − 1

2[n2− `2]
1
2φn−2,` (38)

where

t̂ = −1

2

[
1

r

∂

∂r

(
r
∂

∂r

)
− `

2

r2

]
. (39)

Terms inr4 in equation (34) are obtained by repeating equation (38). Numerical convergence
with respect to truncation of the resulting tridiagonal matrix naturally depends on the
parameterβ. The lowest 15 levels forβ = 0.005, were converged to six decimal places
after truncation of the sum in (35) to 50 terms.

The points in figure 3 mark the numerically determined eigenvalues aroundε = 0 for
−10< ` < 10. Note that low-energy points with 06 ν 6 3 have been omitted and that
the highest point atL = 0 corresponds toν = 15. To bring out the underlying patterns,
full and broken lines are used to join points with a common radial quantum number,v, and
a common ‘total’ quantum number,n = 2v+ |`|, respectively. All the qualitative features
predicted by the previous semiclassical arguments are clearly apparent. Thev quantized
curves show a sharp transition from smooth variation through` = 0 when ε < 0, to a
discontinuous first deriviative whenε > 0, while the opposite is true for the brokenn
quantized curves. There is also a near symmetry between the positive(∂2E/∂`2)v and the
negative(∂2E/∂`2)n second derivatives when the sign of the energy is reversed.

Quantitative comparison of the quantum-mechanical eigenvalues and their semiclassical
counterparts derived from equation (18) reveals close agreement apart from a systematic
discrepancy for levels aroundε = 0 and` = 0, of the form illustrated in figure 4. The
points mark the discrepancies at the calculated quantum-mechanical energies forβ = 0.005
and the curves indicate the form of a semiclassical correction function which is derived in
the following section.
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Figure 3. The central part of the quantum-mechanical spectrum equivalent to figure 2(a),
organized according to the two quantization schemes. Full and broken lines join points with
commonv and commonn = 2v + |`| values respectively. The quantum numbers are given to
the right and left respectively. Curves for oddn values, which join points with odd̀ have been
omitted for clarity.

5. Local corrections to the Bohr–Sommerfeld rule

The Bohr–Sommerfeld rule (18) follows directly from the form of the JWKB wavefunction
on the assumption that the radial motion is bounded by two isolated turning points, each
of which contributes a Maslov contribution ofπ/4 to the overall phase [1]. A correction
to allow for coalescence of the inner turning point with the singularity in equation (4) at
r = 0 may be obtained by comparison of the JWKB wavefunction with the asymptotic
properties of solutions to a model equation with the same disposition of singularities and
turning points nearr = 0 [1, 13, 14].

The obvious form for the comparison is[
−1

2

1

r

d

dr

(
r

d

dr

)
− `

2

r2
− 1

2
r2

]
9 = ε9 (40)

which transforms under the substitutions, valid for` > 0,

z = r2 (41)

9 = z`/28 (42)

to (
z

d2

dz2
+ (`+ 1)

d

dz
+ 1

4
z + ε

2

)
8 = 0. (43)

The further substitutions

z = iξ (44)
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Figure 4. The semiclassical phase correctionη(ε, `) functions for` = 0, 1 and 2. The points
indicate discrepancies between the Bohr–Sommerfeld and quantum-mechanical eigenvalues in
the formπ(εBohr− εquantum)/(∂ε/∂v)`, suggested by equation (59).

8 = e−
1
2 ξχ (45)

then lead to a form of Kummer’s equation [8].[
ξ

d2

dξ2
+ (`+ 1− ξ) d

dξ
− 1

2
(`+ 1− iε)

]
χ = 0 (46)

with the regular solution

χ = M
(
`+ 1− iε

2
, `+ 1, ξ

)
(47)

whereM(a, b, ξ) is the confluent hypergeometric function [8]. It follows on combining
(41), (42), (44), (45) and (47) that

9 = z`/2e−iz/2M

(
`+ 1− iε

2
, `+ 1, iz

)
. (48)

The asymptotic expansion [8] valid for−π
2 < arg iz < 3π

2

M(b + ic, 2b, ic) ∼ 0(b)[eiπ(b+ic)(iz)−b−ic/0(b − ic)+ eiz(iz)−b+ic/0(b + ic)] (49)

converts to the following asymptotic form for9:

9 ∼ Cz− 1
2 cos

[
z

2
+ ε

2
`nz − (`+ 1)

π

4
− arg0

(
`+ 1+ iε

2

)]
(50)

whereC is an unimportant normalizing factor.
Turning to the JWKB function, the substitution

r = ex (51)
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casts equation (40) into the form[
d2

dx2
+ k2

` (x)

]
9 = 0 (52)

where

k2
` (x) = 2εe2x − `2+ e4x. (53)

The substitutionz = e2x therefore leads to the following form for the JWKB phase [1, 14]∫ x

x1

k`(x) dx = 1

2

∫ z

z1

√
z2+ 2εz − `2

z
dz =

[
(z2+ 2εz − `2)

1
2

−` arctan

(
εz − `

`(z2+ 2εz − `2)
1
2

)
+ ε ln(2(z2+ 2εz − `2)

1
2 + 2z + 2ε)

]z
z1

∼ 1

2
z + ε

2
ln z + ε

2
− `

2
arctan

(ε
`

)
− ε

4
ln

(
ε2+ `2

4

) −`π
4
. (54)

It follows that the argument of

9JWKB ∼ Cz− 1
2 cos

(
1

2

∫ z

z1

(z2+ 2εz − `2)
1
2

z
dz − π

4

)
(55)

differs from that in (50) by a term

η(ε, `) = ε

4
ln

(
ε2+ `2

4

)
− ε

2
+ `

2
arctan

(ε
`

)
− arg0

( |`| + 1

2
+ iε

2

)
(56)

which corrects for neglect of the singular behaviour atz = 0 in the primitive JWKB
approximation. To avoid ambiguity,̀ in the argument of the0 function has been replaced
by |`| because the regular form for9 in (42) would require the substitution of−` for ` in
equations (42)–(50) if̀ were negative. The improved quantization formula is obtained by
adding this correction to equation (18); thus

1

2

∫ z2

z1

(
z2+ 2εz − 2βz3− `2

)1
2

z
dz + η(ε, `) =

(
v + 1

2

)
π. (57)

Its local nature may be seen by using Stirling’s approximation [8] to evaluate0
(
`+1+iε

2

)
,

with the result for large
∣∣ `+1+iε

2

∣∣
η(ε, `) ∼ −1

2

ε

(`+ 1)2+ ε2
. (58)

The introduction of this phase correction in equation (57) translates into a correction to
the energy of order

1ε = (ε − εJWKB)

= −(η(ε, `)/π)(∂ε/∂v)` (59)

where (∂ε/∂v)` is the local energy separation, becausev changes by one unit from one
energy to the next. Figure 4 confirms that this correction accounts almost entirely for the
error in the Bohr–Sommerfeld energy levels, in the given test caseβ = 0.005. It is seen that
η(ε, `) = −η(−ε, `), with a maximum magnitude of 0.15 at|ε| = 0.356, which translates,
via equation (59), to a maximum error inεJWKE of only 5% of the local energy separation.
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6. Summary and conclusions

Features of the quantum-mechanical eigenvalue spectrum of degenerate double minimum
champagne bottle have been related to the following aspects of the underlying classical
mechanics.

(a) The known [2] absence of a global system of angle-action variables is reflected in
a sharp change in the energy level pattern organized by a radial quantum numberv and
angular mementum̀. The levels vary smoothly with̀ at constantv for ε < 0, but there is
sharp discontinuity in the derivative (∂ε/∂`)v at ` = 0 for ε > 0.

(b) An alternative(n, `) quantization scheme, wheren = 2v + |`|, shows the opposite
effect. The derivative (∂ε/∂`)n is continuous forε > 0 but has a discontinuity at̀= 0 for
ε < 0.

(c) A near symmetry between positive and negative second derivatives (∂2ε/∂`2)v for
ε < 0 and (∂2ε/∂`2)n for ε > 0, over the range−ε0 < ε < ε0, whereε0 is the well depth,
was related to the near hyperbolic nature of two different types of trajectory segments at
corresponding positive and negative energies. Similar near symmetries in the vibrational
level densities and the number of bound levels in the energy ranges−ε0 < ε < 0 and
0< ε < ε0 were also identified.

(d) The main conclusions, including a formulav0 + 1
2 = (8ε0/3π) for the number of

` = 0 states withε < 0, were deduced at the Bohr–Sommerfeld level. A comparison with
numerically accurate quantum-mechanical eigenvalues revealed a systematic discrepancy
for levels with ε l 0 and` l 0, which were removed by incorporation of an analytical
phase correctionη(ε, `) to the usual semiclassical Maslov term.
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